

STV8230

NICAM SINGLE CHIP

ADVANCE DATA

- DEMODULATION, DECODING and PROC-ESSING IN ONE CHIP
- ON CHIP DATA SHAPING AND FM NOTCH FILTERS
- AUTOMATIC DUAL STANDARD DEMODULA-TION
- SINGLE QUARTZ CRYSTAL FOR DUAL STANDARDS
- LANGUAGE AND SOURCE SELECTION SWITCH MATRIX
- STAND ALONE MODE OR I²C BUS PRO-GRAMMABLE MODE
- PROGRAMMABLE ERROR MONITORING

PIN CONNECTIONS

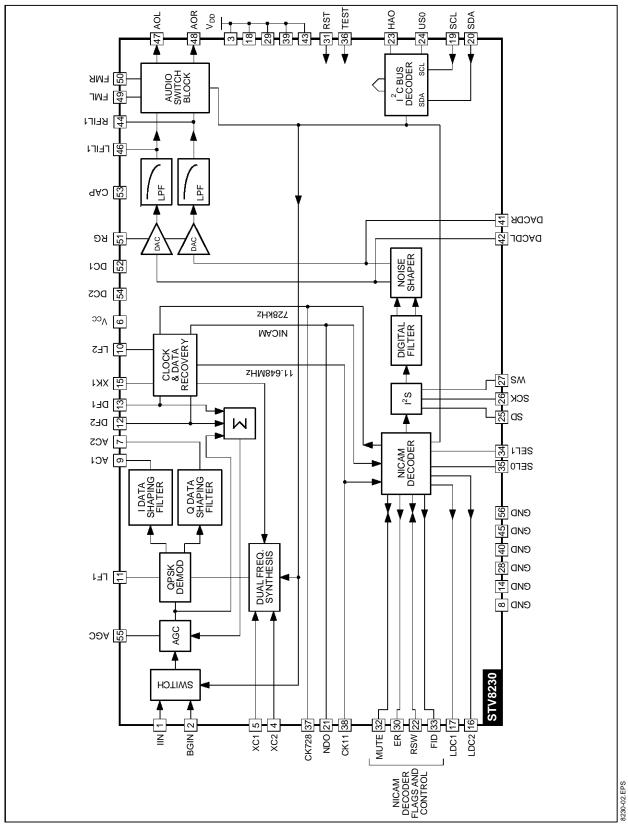
I _{IN}	1 56	GND
BG IN	2 55	AGC
V _{DD}	3 54	DC2
XC2	4 53	CAP
XC1	5 52	DC1
V _{cc}	6 51	RG
AC2	7 50	FMR
GND	8 49	FML
AC1	9 48	AOR
LF2	10 47	AOL
LF1	11 46	LFIL1
DF2	12 45	GND
DF1	13 44	RFIL1
GND	14 43	V _{DD}
ХК1 🗌	15 42	DACDL
LDC2	16 41	DACDR
LDC1	17 40	GND
V _{DD}	18 39	V _{DD}
SCL	19 38	CK11
SDA 🗌	20 37	CK728
	21 36	TEST
RSW	22 35	SELO
HAO	23 34	SEL1
US0	24 33	FID
SD 🗌	25 32	MUTE
scк 🗌	26 31	RST
ws 🗌	27 30	ER
GND	28 29	V _{DD}
		J

DESCRIPTION

The NICAM Single Chip STV8230, made in BICMOS technology, performs all the required processing for the NICAM signal, in accordance with EBU SPB 424 specifications. To save external components, data shaping filters and FM notch filters have been integrated. An I²S output is provided for digital audio purposes and can be used as an input for converting to analog another digital source. The STV8230 can work in a stand alone mode by using some hardware configurable pins or in programmable mode by setting all functions via serial I²C BUS.

June 1994

8230-01.EPS


STV8230

PIN DESCRIPTION

Pin Name	Pin Number	Туре	Functions
GENERAL			
VCC	6		++12V Supply
VDD	3,43		++5V Analog supply
VDD	18,39,29		++5V Digital supply
GND	8,45,56		Analog ground
GND	14,28,40		Digital ground
NALOG	14,20,40		Bigital ground
lin	1		System I input
BGIN	2		System B/G input
XC2	4		Optional carrier crystal system
XC1	5		Optional carrier crystal system
AC2	7		Data shaping filter output 2
AC1	9		Data shaping filter output 1
LF2	10		Clock recovery loop filter
LF1	11		Carrier recovery loop filter
DF2	12		Data filter 2 (eye monitor)
DF1	13		Data filter 1 (eye monitor)
XK1	15		Crystal oscillator (11.648MHz)
RFIL1	44		J17 de-emphasis right channel
LFIL1	46		J17 de-emphasis left channel
AOL	47		Audio output left
AOR	48		Audio output right
FML	49		FM audio left input
FMR	50		FM audio right input
RG	51		DAC gain resistor
DC1	52		
CAP			Decoupling capacitor
DC2	53		Decoupling capacitor
	54		Decoupling capacitor
AGC	55		AGC filter capacitor
DIGITAL			
LDC2	16	OUT	LED driver (stereo and data)
LDC1	17	OUT	LED driver (single and dual mono)
SCL	19	IN	IIC Serial bus clock
SDA	20	BIDIR	IIC Serial bus data
NDO	21	BIDIR	NICAM data
RSW	22	BIDIR	Reserve sound switch flag (force to FM)
HA0	23	IN	Chip address lsb
US0	24	OUT	User bit 0 (open drain)
SD	25	BIDIR	IIS Serial data
SCK	26	OUT	IIS Serial clock
WS	27	OUT	IIS Word select
ER	30	OUT	Error monitor
RST	31	IN	Power on reset
MUTE	32	BIDIR	Nicam mute (force to NICAM)
FID	33	OUT	Frame flag
SEL1	34	IN	Language selection 1
SEL0	35	IN	Language selection 0
TEST	36	IN	Test mode control
CK728	37	OUT	728KHz clock
CK11	38	BIDIR	11.648MHz clock
DACDR	41	BIDIR	DAC data right
DACDL	42	BIDIR	DAC data left

BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The block diagram of the STV8230 shows that all the necessary functions required to accept the QPSK carrier and to derive from this the actual linear audio signals are contained entirely within the IC.

The two inter carrier inputs enter a source selection switch and pass immediately to an AGC block which has a total range of better than 40dB. The resulting levelled signal passes to the QPSK demodulator which recovers the NICAM 728Kb/sdata stream by means of carrier and clock recovery circuits.

Carrier recovery is achieved with a baseband remodulator which consists of a phase locked loop with a switchable phase detector. This allows it to lock to one of four possible phases of the QPSK carrier without disruption due to the modulation. Dual frequency operation is made possible by synthesising the carrier reference frequency thus saving the need for two extra crystals.

The standards switch controls operation of the QPSK demodulator at either 6.552MHz or 5.85MHz. This can be controlled via the I²C bus or the decoder set into automatic mode in which it determines the standard by alternately trying to lock to the two systems.

On chip switchable data shaping filters (40% Roll off cosine for B/G standard and 100% Roll off cosine for I standard) and FM notch filters save external components. Then the in-phase and quadrature data channels are sliced by comparators. The symbol clock is recovered from this data and used to sample and re-time it. The two data channels are then decoded and serialised to obtain the NICAM-728 data which is then passed on to the NICAM decoder.

The NICAM decoder performs data and sound recovery from the signals specified in EBU SPB 424. The expanded digital audio signals (14-bit) are made available at the digital audio interface in a serial multiplex of left and right channels. They are also processed by a 4-times upsampling digital filter and noise shaper which results in a high speed digital data stream which can be applied to the 1-bit D-A convertors.

Frame alignment to the NICAM signal requires searching out a Frame Alignment Word (FAW) and a 16 frames sequence conveyed by the C0 bit. This process is complicated by the presence of aliases of the FAW and, because of noise and interference, errors in the incoming NICAM data. A robust scheme is implemented which ensures the decoder will align, and stay aligned, to signals beyond the limit of maximum useable error rate (1-in-100).

All of the data in a NICAM frame is scrambled, expect for the FAW, to ensure randomising of the QPSK modulated carrier spectrum and to assist in clock recovery. A descrambler is contained in the STV8230 which generates a 511 bit PRBS which is synchronised to that used by the scrambler at the transmitter and performs modulo-2 addition with the incoming data. This recovers the original data.

For Pay-TV applications, alternative methods of encryption can be considered. One possible method is to change the initialisation of the PRBS generator on a frame-by-frame basis rather than having all nine bits of the PRBS set to 1 as is normally the case.

Such an encryption system can be managed in the STV8230. If 7 or less clock cycles are counted on CW-clock during a frame, then the PRBS is preset to all 1s. If 8 clock cycles are counted, 8 bits of CW-data are clocked into a shift register, the first bit of the last transfer now moving to bit-9 position in the shift register. The resulting value is used to preset the PRBS generator on the next frame. If 9 clock cycles are counted, the CW-data (which has been clocked into a 9-bit shift register) is used to preset the PRBS generator on the next frame. If 10 or more clock cycles are counted, only the first 9 bits of the CW-data are used and loaded into the PRBS generator on the next frame.

Together, a RAM and address generator de-interleave the incoming samples so that they are stored sequentially. NICAM frames are stored in three pages which allows simultaneous reading and writing of mono/stereo samples.

Scale factor bits are extracted from the samples by performing majority decision operations on the parity bits from groups of samples. This information is applied to the expander which shifts the 10-bit input samples to one of five positions thus forming a new 14-bit output word. Appropriate padding of missing LSB's and MSB's is provided.

Samples which are determined to be in error by the parity check are replaced by interpolated samples obtained from known good samples. Under high error rate or fault conditions, the samples are muted (set to all 0's).

An error counter provides muting for the NICAM audio if the error rate exceeds 1-in-100. To prevent chatter under marginal conditions, hysteresis is provided so that the audio will only un-mute if the error rate drops below 1-in-400.

An error output (ER) is provided which gives an indication of the BER by providing one pulse for every error in the data. This may be interpreted externally to give a representative indication for production line test purposes. The BER information is additionally available through the l^2C bus.

Majority decision logic recovers the application control information by decision over 16 frames. Flags are provided from here which indicate the mode of operation eg STEREO/MONO/DATA etc.

Language selection can be programmed through the SEL0/1 pins as in the following table :

SEL0	SEL1	L	R
0	0	M1	M2
0	1	M1	M1
1	0	M2	M2
1	1	M2	M1

In most cases, these pins will be set to 0 and language selection performed by the switch matrix in the audio processor.

Note that, in dual language operation, if M1 and M2 are selected and the NICAM signal fails, if reserve sound is available, M1 will default to the reserve sound and M2 will be muted.

A digital filter performs 4x upsampling in two stages. The main FIR 2x upsampler is followed by a smaller 2x FIR upsampler. Digital upsampling means a much simpler post-DAC reconstruction filter can be used thus saving on external component count and cost.

A noise shaper converts the samples from the digital filter into two high speed serial bit streams which can be applied to the DACs.

Conversion of the pulse density modulated bit streams to analog takes place and is followed by

low pass filtering which removes high frequency quantising noise and performs J-17 de-emphasis. The DAC signal level can be adjusted to match that of the reserve sound by adjusting the value of RG up to a maximum of $1V_{RMS}$ on pins L/RFIL1.

Once the analog audio has been recovered, certain source switch functions must be performed. The reserve sound switch automatically selects FM-Mono/Stereo if the NICAM signal fails and the reserve sound flag (C4) is set to 1. If C4 is set to 0, the switch will not change and the audio outputs will be muted. If the NICAM signal only carries data, FM is selected. This switch can be forced to select FM via the I²C bus in the case of marginal reception of the NICAM signal. Also, it can be forced to select a stereo audio signal from a Zweiton decoder for instance.

The audio outputs can be muted and an additional +6dB gain applied to raise the output levels to 1Vrms maximum. The DAC outputs are automatically mute under the following conditions :

- 1. Loss of frame alignment.
- 2. The bit error rate (BER) is >1-in-100.
- 3. The NICAM signal is conveying M1. The right DAC is muted unless M1 has been selected to be on both DAC outputs.
- 4. The NICAM signal is conveying data only.

A I²C bus interface provides access to control and status registers within the chip to allow control of its functions and monitoring of status. A digital filter is included which improves noise immunity.

A standard configuration at power-on reset sets all the control register in a stand alone mode.

Thanks to this stand alone mode the STV8230 can work without any I^2C programmation.

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	15	V
Vcc	Supply Voltage	7	V
P _{tot}	Total Power Dissipation	1.2	W
T _{oper}	Operating Temperature Range	0, +70	°C
T _{stg}	Storage Temperature Range	-20, +150	°C

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA

Symbol	Parameter	Value	Unit
Rth (j-a)	Junction-ambient Thermal Resistance Max.	TBD	°C/W

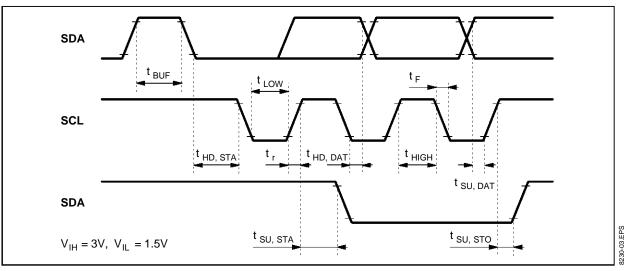
ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 25^{\circ}C, V_{CC} = 12V, V_{DD} = 5V, unless otherwise specified)$

Symbol	Parameter	Min	Тур	Max	Unit
SUPPLY					
V _{CC1}	Supply Voltage Range	11.4	12	12.6	V
V _{DD}	Supply Voltage Range	4.75	5	5.25	V
Icc	Supply Current		40		mA
I _{DD}	Supply Current		80		mA
OUTPUTS					
SCK,WS,FI	D,CK728,CK11,NDO,ER				
Vol	Low Output Voltage (I _{OL} = - 4mA)			0.4	V
V _{OH}	High Output Voltage (I _{OH} = 4mA)			V	
US0 (Open		0.7V _{DD}			
Vol	Low Output Voltage (I _{OL} = - 4mA)			0.4	V
I _{LK}	High Output Current (Leakage)		± 2	V	
LED DRIVE	RS LDC1,LDC2			1	
lol	Low Output Current (V _{OL} = 0.4V)		- 4		mA
I _{OH}	High Output Current (V _{OH} = 0.7V _{CC})		+4		mA
NPUTS		I			-
HAO.SEL1.	SEL0,TEST,RST				
VIL	Low Input Voltage			0.8	V
VIH	High Input Voltage			V	
I _{LK}	Input Leakage Current	0.6V _{DD}		± 2	μA
BI-DIRECTIC					•
RSW, MUTI					
V _{OL}	Low Output Voltage (I _{OL} = - 4mA)			0.4	V
VOL VOH	High Output Voltage ($I_{OH} = 100\mu$ A)	0.7V _{DD}		0.4	V
VIL	Low Input Voltage	0.1 400		0.8	V
SD, DACDL				0.0	v
V _{OL}	Low Output Voltage (I _{OL} = -4mA)			0.4	V
VOL	High Output Voltage ($I_{OH} = 4mA$)	0.7V _{DD}		0.1	V
VIL	Low Input Voltage	0.17700		0.8	V
VIH	High Input Voltage	0.6V _{DD}		0.0	V
I _{LK}	Input Leakage Current			± 2	μΑ
² C INTERFA					μ.,
SCL					
		0		4.5	N
	Low Input Voltage High Input Voltage	0		1.5	V
VIL		3		VDD	V
VIH				100	1.1.1.
VIH fscl	SCL Clock Frequency			100	kHz
VIH				100 2 10	kHz μs μA

ELECTRICAL CHARACTERISTICS (continued) ($T_{amb} = 25^{\circ}C$, $V_{CC} = 12V$, $V_{DD} = 5V$, unless otherwise specified)

Symbol	Parameter	Min	Тур	Max	Unit
I ² C INTERFA	CE				
SDA					
VIL	Input Low Voltage	0		1.5	V
VIH	Input High Voltage	3		V _{DD}	V
t _R , t _F	Input Rise/Fall Times			2	μs
I _{LK}	Input Leakage Current ($V_1 = 5.5V$ with output off)			10	μA
Cı	Input Capacitance			7	pF
Vol	Low Output Voltage (I _{OL} = 3mA)	0		0.5	V
tF	Output Fall Time between 3.0V and 1.0V			200	ns
CL	Load Capacitance			400	pF
ANALOG PIN					
I-B/G SELE	CTOR				
Vdc	DC Bias Voltage		2.8		V
Rin	Input Resistance (Selected input)		10		kΩ
Cin	Input Capacitance		10		pF
AGC					F.
VIN	Input Voltage Range (FM + NICAM carriers)			1000	mV _{PF}
AGCdyn	AGC dynamic range (NICAM to FM carrier ratio 7dB B/G system)		33		dB
AGCdyn	AGC dynamic range (NICAM to FM carrier ratio 10dB I system)		30		dB
AGClv	AGC Low Voltage (V _{IN} = max)		2		V
AGChv	AGC High Voltage (V _{IN} = min)		11		V
AGCta	AGC Attack Time (V_{IN} = min to max, CAGC = 100nF)		15		ms
AGCtd	AGC Decay Time (V_{IN} = max to min, CAGC = 100nF)		220		ms
QPSK DEM	ODULATOR (LF1)				
VDC	DC Bias Voltage (SYN = 1)	1	5	10	V
Kd	Phase Detector Constant (no mod.)		33		μA/ra
Kv	VCO Constant		3.5		MHz/
EYE DIAGR	AM MONITORS (DF1, DF2)				
V _{DC}	DC Bias Voltage		2.5		V
RIN	Input Resistance		10		kΩ
Vin	Input Voltage (System I)		0.6		VPP
CLOCK AN	D DATA RECOVERY (LF2)				
V _{DC}	DC Bias Voltage		2.5		V
Kd	Phase Detector Constant (all 1's)		3		μA/ra
Kv	VCXO Constant		4.29		kHz/V
DAC AND F	ILTER (LFIL1,RFIL1)		+	+	
V _{DC}	DC Bias Voltage		2.5		V
IOUT	Output Current ($R_G = 5.6 k\Omega$,DAC full scale)		340		μΑρρ
V _{RG}	RG Pin DC Voltage		1.25		V
R _G	Gain adjustment Resistor	5.6		10	kΩ


ELECTRICAL CHARACTERISTICS (continued)

 $(T_{amb} = 25^{\circ}C, V_{CC} = 12V, V_{DD} = 5V, unless otherwise specified)$

Symbol	Parameter	Min	Тур	Max	Unit
NALOG PI	NS (continued)				
AUDIO OUT	rput (Aol,Aor)				
	DAC SELECTED				
Vout	Output Voltage (1kHz at -11.75dB,J17 de-emphasis, $R_G = 5.6k\Omega$)		0.5		V _{RMS}
S/N	Relative to $0.5V_{RMS}$, noise measured with IEC-179 A-filter		80		dB
THD	1kHz at 0.5V _{RMS} , $R_G = 5.6 k\Omega$ 0.03				
	Crosstalk at 1kHz, 0.5V _{RMS}		70		dB
Chm	Maximum Channel Matching Error			2	dB
	FM STEREO AUDIO INPUT SELECTED (FMR,FML)				
S/N	Relative to $0.5V_{RMS}$, noise measured with IEC-179 A-filter		88		dB
THD	1kHz at 0.5V _{RMS}		0.02		%
	Crosstalk at 1kHz, 0.5V _{RMS}		80		dB
Chm	Maximum Channel Matching Error			2	dB
	FM AUDIO INPUT				
V _{IN}	FM Signal Input Voltage		0.5	1.2	V _{RMS}
V _{DC}	DC Bias Input Voltage		2.5		V
² C BUS TIM	ING				
SERIAL BU	S (referred to $V_{IH} = 3V$, $V_{IL} = 1.5V$)				
tLOW	Low Period Clock	4			μs
tніgн	High Period Clock	4			μs
tsu,dat	Data Set-up Time	250			ns
t _{HD,DAT}	Data Hold Time	170			ns
tsu,sто	Stop Set-up Time from Clock High	4			μs
t BUF	Start Set-up Time following a Stop	4			μs
thd,sta	Start Hold Time	4			μs
tsu,sta	Start Set-up Time following Clock Low to High Transition	4			μs

8230-06.TBL

Figure 1 : I²C Bus Timing

I²C REGISTERS

Software control of IC's is given by programming four registers, one read only status register (SR0) and three read and write control registers (CR1,CR2,CR3).

Transmit format : S=Start, A=Acknowledge, P=Stop

S	CHIP ADDRESS	0	А	REG SUB ADDRESS	А	DATA	A	Р
---	--------------	---	---	-----------------	---	------	---	---

Receive format:

S CHIP ADDRESS 1 A SR0 DATA A CR1 DATA A P
--

Note: "All registers are read sequentially; device status and the contents " of all registers may be read. The sequence may be terminated by not acknowledging (NOACK) the slave.

Chip address

1	0	1	1	0	1	HAO	R/W
MSB							LSB

HAO : Hardware address selection pin

Register addresses

Reg. Name				Sub A	ddress	Function			
SR0	0	0	0	0	0	0	0	0	NICAM status
CR1	0	0	0	0	0	0	0	1	Filters & Audio switch control
CR2	0	0	0	0	0	0	1	0	NICAM control
CR3	0	0	0	0	0	0	1	1	System control

SR0 : NICAM status (read only)

	•	• /					
STD	C1	C2	C3	C4	мит	LA2	L/S
0	0	0	0	1	1	1	1
MSB					-		LSB
STD	: STandard sele	ecteD, 0 = sys	tem I, 1 = sys	stem B/G			

C4 : Reserve sound flag, 1 = FM back up

- C1-C3 : Application bits received after majority logic
- : Nicam MUTe, 1 = DAC output muted MUT
- LA2 : 1 = lost of super frame alignment
- L/S : if FN1 = 0 then Loss of frame alignment if L/S = 1

: if FN1 = 1 then L/S = STD (L/S = 1, B/G standard - L/S = 0, I standard)

CR1 : Filters and Audio Switch control (read and write register)

Х		Х	FL2	FL1	FL0	G0	AUM	FRE
0	0	0	0	0	0	0	0	
MSB	•				•	-		LSB

MSB

FLn : Filter control

FL2 = 0, Root cosine filter enabled

FL1 = 0, I or B/G notch filter enabled

FL0 = 0, B/G group delay equalizer disabled

: Audio buffer gain, 0 = 0dB, 1 = +6dB G0

: Audio mute, 1 = muted AUM

FRE : Free run clock VCXO FOR SET UP ON LF2, 1 = free run

STV8230

SDI

CR2 : NICAM control (read and write register)

SDI	ECT	MAE	FN1	UMT	LA1	LA0	Х
0	0	0	0	0	0	0	1
MSB							LSB

		LS

- : Bit error rate counting time 0 = 128ms, 1 = 64ms ECT
- MAE : Max allowed errors -0 = 511, 1 = 255
- FN1 : Set function of bit 0 in SR0 (status register)
- 0 = loss of frame alignment, 1 = standard status (I or B/G)
- UMT : Un-mute NICAM, 1 = force to un-mute, 0 = automatic

: I^2S interface direction - 0 = Output, 1 = Input

- LA1 : Language select 1 (LA1 + SEL1) (see Figure 3)
- LA0 : Language select 0 (LA0 + SEL0) (see Figure 3)

ECT	MAE	BER MUTE						
0	0			8.9 x 10-3	(1 in 112)			
0	1			4.4 x 10-3	(1 in 225)			
1	0			1.8 x 10-2	2 (1 in 56)			
1	1		8.9 x 10-3 (1 in 112)					
	1	1						
C3	C2	C1	LDC1	LDC2	MODE			
0	0	0	0 Z 0 Stereo		Stereo			
0	1	0	0 0 Z Dual Mono					
0	0	1	1 1 Z Single mono					
0	1	1	1 Z 1 Data					
1	Х	Х	Z	Z	-			

Z = High impedance

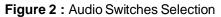
CR3 : System control (read and write register)

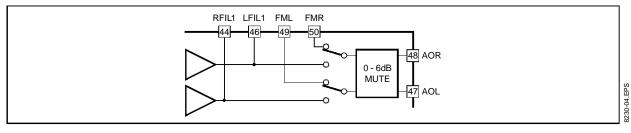
Х	US0	AUT	IBG	FS1	FS0	Х	SYN
0	0	1	0	0	0	0	1
MSB		•	•		-		LSB

MSB

US0 : User bit 0 (output)

AUT : Automatic standard selection, 1 = enable


IBG : Standard select when AUT =0, 1 = B/G, 0 = I


FSn : Force setting of reserve sound switch (see table and Figure 2)

SYN : 1 = synthesiser, 0 = dual VCXO (carrier loop)

FS1	FS0	Selection
0	0	Auto NICAM
0	1	FM-Stereo
1	0	FM-Stereo
1	1	NICAM

@ Register configuration on power on reset and in stand alone mode X bit must not be used. To be left at power on reset value

NICAM STAND-ALONE APPLICATION

The NICAM single chip has been designed to be monitored by the I^2C bus; nevertheless stand-alone working capability is offered to the designer for low cost applications.

In order to know the status of the device in stand-alone mode, consider the content (@) of the four I^2C registers at power-ON (4 registers : SR0 - CR1 - CR2 - CR3).

Hardware configuration pins are described below.

RSW (Pin 22)

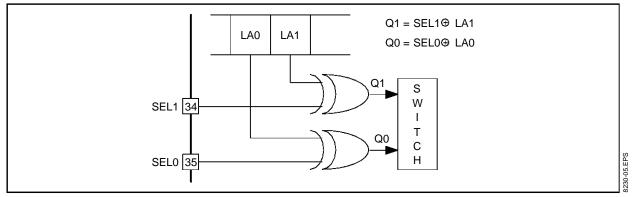
- as an output :
 - status of the RSW switch
 - 0 = FM stereo
- 1 = NICAM
- as an input
- 0 = FM stereo (forced)

SEL0 /SEL1 (PINS 34/35) (see Figure 3)

- to select the language in case of bilingual operation.

- selected value is related to LA0 and LA1

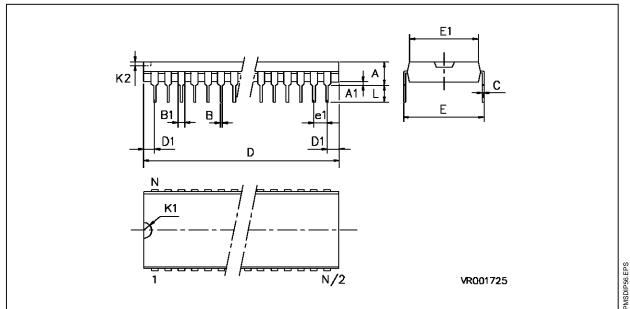
As the I^2C bus is not used LA0 and LA1 = 0 (power-on condition)/SEL0 = Q0, SEL1 = Q1 The 4 choices are summarized in the table below.


SEL0	SEL1	DACDL	DACDR
0	0	M1	M2
0	1	M1	M1
1	0	M2	M2
1	1	M2	M1

M1 = Mono 1M2 = Mono 2

MUTE (PIN 32)

- as an output :
 - status of the DAC
 - 0 = unmuted
- 1 = muted
- as an input :
 - 0 = unmute DAC (forced)


Figure 3 : Langage Selection

PACKAGE MECHANICAL DATA

56 PINS - PLASTIC SHRINK DIP

Dim.		mm			inches	
200	Min	Тур	Max	Min	Тур	Max
А			5.08			0.200
A1	0.51			0.020		
В	0.35		0.59	0.014		0.023
B1	0.75		1.42	0.030		0.056
С	0.20		0.36	0.008		0.014
D		52.12			2.052	
D1	-	-	-	-	-	-
E			18.54			0.730
E1		13.72				0.540
K1	-	-	-	-	-	-
K2	-	_	-	_	_	_
L	2.54		3.81	.100		0.150
e1		1.78			0.070	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

